
www.manaraa.com

Experience Report: Ocsigen, a Web Programming Framework

Vincent Balat Jérôme Vouillon Boris Yakobowski
Laboratoire Preuves, Programmes et Systèmes

Université Paris Diderot (Paris 7), CNRS
Paris, France

{vincent.balat, jerome.vouillon, boris.yakobowski}@pps.jussieu.fr

Abstract
The evolution of Web sites towards very dynamic applications
makes it necessary to reconsider current Web programming tech-
nologies. We believe that Web development would benefit greatly
from more abstract paradigms and that a more semantical approach
would result in huge gains in expressiveness. In particular, func-
tional programming provides a really elegant solution to some im-
portant Web interaction problems, but few frameworks take advan-
tage of it.

The Ocsigen project is an attempt to provide global solutions
to these needs. We present our experience in designing this general
framework for Web programming, written in Objective Caml. It
provides a full featured Web server and a framework for program-
ming Web applications, with the aim of improving expressiveness
and safety. This is done by taking advantage of functional program-
ming and static typing as much as possible.

Categories and Subject Descriptors D.1.1 [PROGRAMMING
TECHNIQUES]: Applicative (Functional) Programming; H.3.5
[INFORMATION STORAGE AND RETRIEVAL]: Online Informa-
tion Services—Web-based services

General Terms Design, Languages, Reliability, Security

Keywords Ocsigen, Web, Networking, Programming, Implemen-
tation, Objective Caml, ML, Services, Typing, Xhtml

1. Introduction
In the last few years, the Web has evolved from a data-centric plat-
form into a much more dynamic one. We tend now to speak more
and more of Web application, rather than Web sites, which hints
that the interaction between the user and the server is becoming
much more complex than it used to be.

What is striking is that this evolution has not been induced,
nor even followed, by a corresponding evolution of the underlying
technology. The RFC specifying the version of the HTTP protocol
currently in use dates back to 1999 and current HTML looks very
much like the one we were using ten years ago. The main change
is probably the increasing use of JavaScript, mainly due to imple-
mentation improvements, which made possible the advent of a new
kind of Web applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

Web programming is highly constrained by technology (pro-
tocols, standards and browsers implementations). Commonly used
Web programming tools remain very close to this technology. We
believe that Web development would benefit a lot from more ab-
stract paradigms and that a more semantical approach would result
in huge gains in expressiveness.

It is now widely known in our community that functional pro-
gramming is a really elegant solution to some important Web in-
teraction problems (Queinnec 2000; Graham 2001; Hughes 2000).
But this wisdom has not spread in the Web programming commu-
nity. Almost no major Web framework is taking advantage of it1.
We believe the reason is that functional programming has never
been fully exploited and that one must be very careful about the
way it is integrated in a complete framework in order to match pre-
cisely the needs of Web developers.

In this paper, we present our experience in designing Ocsigen,
a general framework for Web programming in Objective Caml
(Leroy et al. 2008). The Ocsigen project is trying to find global
solutions to these needs. It provides a full featured Web server
and a framework for programming Web applications, with the aim
of improving expressiveness and safety. This is done by taking
advantage of functional programming and static typing as much
as possible (Balat 2006).

This paper is a wide and quick overview of our experience
regarding this implementation. In section 2, we describe our use
of functional programming. In section 3, we show how some very
strong correctness properties can be encoded using Ocaml’s type
system. Finally, in section 4, we describe the implementation of a
concrete Web application using our solutions.

2. Functional Programming for the Web
The Ocsigen project provides a Web server written in Objective
Caml. This server offers all the features one would expect from a
general purpose Web server, starting with a comprehensive support
of the HTTP 1.1 protocol (including range requests and pipelin-
ing). Data compression, access control and authentication are all
supported. The server is configured through flexible XML-based
configuration files. Personal user configuration files are possible.

The server is designed in a modular way. It can therefore be
extended very easily just by writing new modules in Ocaml. Among
the modules currently available are a module for running CGI
scripts, a reverse proxy (which makes it easy to use Ocsigen with
another Web server), a filter to compress contents, etc.

In the remainder of this section, we highlight the concurrency
model used for the Web server implementation, and then our main
extension to the server, that is, Eliom, a framework for writing Web
applications in Ocaml.

1 A notable exception being Seaside (Ducasse et al. 2004).

www.manaraa.com

2.1 Cooperative Threads
A Web server is inherently a highly concurrent application. It must
be able to handle simultaneously a large number of requests. Fur-
thermore, composing a page may take some time, for instance when
several database queries are involved. The server should not to be
stalled in the meantime. We have chosen to use cooperative multi-
threading to address this issue. Indeed, cooperative threads make
it possible to write multi-threaded code while avoiding most race
conditions, as context switches only occur at well-specified points.
In particular, it is easy to use safely shared mutable datastructures,
such as hash tables, without using any lock.

We use the Lwt thread library (Vouillon 2008), which provides
a monadic API for threads. With this library, a function creating a
Web page asynchronously will typically have type:

unit→ html Lwt.t.

It returns immediately a promise (sometimes also called future)
of type html Lwt.t, that is, a value that acts as a proxy for the
value of type html eventually computed by the function. The bind
operator of the thread monad can be used to access the value when
it becomes available, in order to perform further computations.

In order to make it possible to use third-party non-cooperative
libraries, Lwt also allows to detach some computations to preemp-
tive threads.

2.2 Web Programming
Eliom is the most innovative part of the project. This Web server
extension provides a high-level API for programming dynamic
Web sites with Ocaml. Its design goals are twofold: to propose
a new Web programming paradigm based on semantic concepts
rather than relying on technical details, and to ensure the quality
of Web application by using static typing as much as possible (this
latter point is detailed in section 3).

The main principle on which Eliom is based is the use of first-
class values for representing the services provided by the Web
server. What we call a service is a proxy for a function which can
be called remotely from a browser to generate a page or perform an
action. Eliom keeps track of the mapping from URLs to services:
instead of having one script or executable associated to each URL,
like many traditional Web programming tools, Eliom’s services are
programmatically associated to URLs. This lets the programmer
organize the code in the most convenient way. In particular, it
makes it easy to share behaviors between several pages.

As an example, the following piece of code creates a service srv
at URL http://foo/bar (on some server foo).

let srv = register_new_service ~path:["bar"]
~get_params:unit f

This service does not expect any parameter and the function f is
used to produce the corresponding page. Inside Eliom, one can
generate an anchor linking to this service by applying the HTML
anchor constructor a to the service srv, the current service con-
text sp (we use in particular the current URL to construct relative
links), the anchor element contents anchor_contents and the unit
value () corresponding to the absence of parameters.

a srv sp anchor contents ()

Note that the service URL can be changed just by modifying the
path at a single location in the source code, and all links will remain
correct as they are computed automatically and dynamically.

Several services can share the same URL, for instance when
they expect different parameters. More generally, a full range of
service kinds is provided, allowing to describe precisely how ser-
vices are attached to URLs. This makes it possible to describe very
flexible and precise Web interactions in just a few lines of code.

Services can be dynamically created in response to previous
interactions with the user. Their behavior may depend for instance
on the contents of previous forms submitted by the user or the
result of previous computations. This is implemented by recording
the behavior associated to the service as a function closure in a
table on the server. This is an instance of continuation-based Web
programming (Queinnec 2000; Hughes 2000; Graham 2001), This
is known to be a really clean solution to the so-called back button
problem, but is provided by very few Web frameworks.

3. Typing a Web Application
3.1 XML Typing
Historically, browsers have treated HTML errors leniently. As a re-
sult, Web pages are often written in loosely standardized HTML
dialects (so-called tag soups). However, the interpretation of mal-
formed markup can vary markedly from one browser to the next.
Ensuring that Web pages follow precisely existing specifications
makes more likely that they will be interpreted similarly by all Web
browsers.

Our framework ensures statically that all Web pages served by
the server are well-formed and valid. Two ways are provided to the
developer to this end. The functor-based API of Eliom makes it
possible to support these two choices.

The first way is to use the XHTML module developed by Thorsten
Ohl2. This library provides combinators to write HTML pages.
HTML element types are encoded using phantom types and poly-
morphic variants. The covariant abstract type of elements is type
’a elt. For instance, the combinator p takes as argument a list of
inline elements and returns a paragraph element:

val p : [< inline] elt list -> [> ‘P] elt

(The type given here is a simplification of the actual type which
allows to provide attributes to the element.) Here is a piece
of code that builds a simple page, given a list of inline ele-
ments the_page_contents.

html
(head (title (pcdata "Hello world!")) [])
(body (h1 [pcdata "Hello world"]

:: the_page_contents))

By using a syntax extension based on the Camlp4 preprocessor,
HTML fragments can be directly incorporated into an Ocaml
source code. The fragments are translated in Ocaml code that relies
on the library above.

<< <html>
<head> <title>Hello world!</title> </head>
<body> <h1>Hello world</h1>

$the_page_contents$ </body>
</html> >>

The second way of writing valid Web pages is to use Ocaml-
Duce (Frisch 2006), which brings together Ocaml and the CDuce
language. The latter is specifically designed for XML, and allows
to manipulate XML documents with very precise (in fact, exact)
typing.

{{ <html>
[<head>[<title>"Hello world!"]
<body>[<h1>"Hello world"

!{:the_page_contents:}]] }}

Unlike the XHTML library, which is specific to XHTML documents,
OcamlDuce can be used to create any kind of XML documents,

2 http://physik.uni-wuerzburg.de/~ohl/xhtml/

http://foo/bar
http://physik.uni-wuerzburg.de/~ohl/xhtml/

www.manaraa.com

for instance, Atom feeds (Nottingham and Sayre 2005). The only
drawback is that OcamlDuce is incompatible with Camlp4 for the
moment, requiring somewhat complicated compilation schemes
when OcamlDuce files are mixed with Ocaml files requiring syntax
extensions.

3.2 Typing Web Interactions
Eliom’s first-class notion of service makes it possible to check the
validity of links and forms. A service is represented as an abstract
data structure containing all the information about its kind, its
URL, its parameters, etc. As we saw in section 2.2, links are built
automatically by a function taking as parameter a service, rather
than a URL. This makes broken links impossible!

The types and names of service parameters are declared when
constructing a service. Here is an example of service with two
parameters year and kind, of types int and string respectively.

let event_info =
register_new_service ~path:["event"]

~get_params:(int "year" ** string "kind")
(fun sp (year, kind) () -> ...)

When a request is received, the actual arguments are automatically
type-checked and converted from string to the right ML datatype
by the server. Note that the type of the function associated to a
service to generate pages depends on the value of the service:
here, it expects a pair of type int * string. This is not easy
to implement in Ocaml. We have considered two solutions to this
problem. The first one, used before version 0.4.0 of Ocsigen was to
rely on functional unparsing (Danvy 1998). The current solution
consists in a simulation of generalized algebraic datatypes (Xi
et al. 2003; Pottier and Régis-Gianas 2006) implemented using
unsafe features of Ocaml, anticipating their future introduction in
the language.

Parameters are statically checked when building a link with
parameters. Concretely, a function that builds a link takes as one
of its parameters the arguments to be given to the service. These
arguments will be encoded in the URL. Again, the type of this
parameter depends on the service.

a event_info sp (pcdata "Last year seminars")
(2008, "seminar")

When generating a link, service parameter names are taken from
the abstract structure representing the service, which ensures that
they are correct. Here, the generated relative link is:

event?year=2008&kind=seminar

Eliom also provides some static guarantees that a form cor-
responds to its target service. As with link functions, the func-
tion that creates an HTML form takes as parameters the service
and the information sp about the request. But instead of being di-
rectly given the contents of the form, it expects a function that
will build the contents of the form. This function takes as pa-
rameters the names of the different fields of the form. To ensure
a correct typing of the fields, we use an abstract parametric type
’a param_name for these names instead of simply type string.
The parameter of this type is a phantom type corresponding to the
type of the service parameter. Each function generating form wid-
gets uses the appropriate type for the name of the parameter it corre-
sponds to. For instance, the checkbox function takes a name of type
bool param_name. This ensures that the field names correspond
exactly to those expected by the service, and that their types are
correct. But there is no guarantee that all required parameters are
present, nor that the same parameter is not used several times in the
form. Indeed, this would require a very sophisticated type system
for forms, which would also need to interact gracefully with the

type system for HTML. Rather than trying to write an hazardous
and complex extension to Ocaml’s type system, we decided to re-
lax somewhat the static checks for forms.

3.3 Typing Database Accesses
Database accesses are crucial for Web programming. We have
found it very convenient to use PG’OCaml3, an interface to Post-
greSQL written by Richard Jones. In particular, Ocsimore, our con-
tent management system (see section 4), relies on it. We actually
included some changes in PG’OCaml to turn its implementation
into monadic style, in order to make it usable with Lwt. Thus, we
do not use preemptive threads and queries do not block the Web
server.

The most noteworthy feature of PG’OCaml is that SQL state-
ments are statically typed, with type inference. Another key point
is that it is immune to SQL code injection vulnerabilities.

Static typing relies on the ‘DESCRIBE statement’ command
provided by recent versions of PostgreSQL. This command returns
the types of the placeholders and return columns of the given state-
ment. At compile time, SQL statements inside the Ocaml code are
thus fed into the PostgreSQL frontend by a Camlp4-based prepro-
cessor, which answers with their types. Types are then converted
back into Ocaml types and used to generate the appropriate code.
As an example, the following code

fun db wiki -> PGSQL(db)
"SELECT id, contents FROM wikiboxes
WHERE wiki_id = $wiki"

defines an Ocaml function of type

db→ wiki id→ (wikibox id× string option) list.

The field contents is an SQL text field which can be NULL. It is
thus mapped to the Ocaml type string option.

The fact that queries are typed proved extremely useful, as it
helps to find out rapidly which queries have to be modified when-
ever the database structure is changed during program develop-
ment.

4. An Application: Writing a Wiki with Ocsigen
4.1 An Overview of Ocsimore
We have started the development of Ocsimore, a content manage-
ment system written using Eliom. At the moment, it mostly consists
in a wiki. Currently in final beta state, it is already used to publish
the PPS laboratory website (http://www.pps.jussieu.fr/).

At the heart of Ocsimore is the notion of box. Wiki pages
are composed by putting together or nesting boxes. This provides
strong possibilities of modularity and code reuse: HTML code can
be shared between several pages simply by putting it in a common
box. Moreover, a box can be a container, that is, it can contain a
hole that is to be filled by the contents provided by an outer box. In
the example below, the first box has a hole (named by convention
<<content>>) and is included in the second box.

Box 1:
The text at the end is in bold: **<<content>>**.

Box 2:
Let us call 1: <<wikibox box=’1’ | In bold >>

The second box is thus displayed as:

“Let us call 1: The text at the end is in bold: In bold.”

The default wiki syntax of Ocsimore is Wikicreole (Sauer et al.
2007). It is translated into well-formed XHTML using OcamlDuce.

3 http://developer.berlios.de/projects/pgocaml/

http://www.pps.jussieu.fr/
http://developer.berlios.de/projects/pgocaml/

www.manaraa.com

Ocsimore features an authentication mechanism, for either NIS
or Ocsimore-specific users. Wikis and wikipages can be assigned
read, write and administration rights. Boxes on which the user has
write rights can be edited.

4.2 General Structure of the Code
Ocsimore is using the object system of Ocaml in order to define
modifiable and extensible widgets in a modular way. This makes it
easy to add extensions without any modification to the core system.
For instance, a comment system (forum, blogs, news) is currently
being implemented. The wiki is also extensible: new kind of boxes
can be implemented and then included in a wiki box.

Ocsimore makes use of Eliom’s most advanced features. For
instance, it takes advantage of non-attached services, i.e. services
that are not associated to any path (they are implemented using
special URL parameters). These services are used for implementing
a connection widget on each page of the site in just a few lines
of code. Indeed, we do not have to consider that each page may
optionally take credential information as parameters. Instead, the
special connection service just performs the action of opening a
session and then triggers the redisplay of the current page.

The same kind of service is also used for editing wiki boxes. As
the central notion in our wiki is not the notion of page but the notion
of box, where a box can be included in several pages, it is important
to keep the information of the current page while editing a box,
and even to edit a box in its context. This behavior is really easy to
implement using Eliom, and is a good example of the simplification
of the code induced by Eliom’s high level features.

It is noteworthy that making so easy the implementation of com-
mon complex Web interactions has an impact on the ergonomics of
Web sites. The example of the connection box is eloquent: in many
sites, lazy PHP programmers prefer having the connection box only
in the main page of the site, rather than duplicating the code for
each page.

In order to avoid any possible performance bottleneck, we have
implemented a cache of database requests and we use an associa-
tion table with polymorphic entries to store data during the genera-
tion of a page. This is used for instance to avoid having to fetch the
current user credentials several times for a same page.

5. Conclusion
A few other projects also aim to take advantage of functional
programming for the Web. The two most closely related are
Links (Cooper et al. 2006) and Hop (Serrano et al. 2006). A few
other tools have also implemented continuation-based Web pro-
gramming: Seaside (Ducasse et al. 2004), Wash/CGI (Thiemann
2002) and PLT Scheme (Krishnamurthi et al. 2007). Eliom de-
parts from all these others projects in that it is based on Ocaml and
proposes a very rich set of services.

The wide overview of the Ocsigen project we have given in this
paper demonstrates that building a Web programming framework
is complex, as many very different issues have to be addressed.
Continuation-based Web programming is a key notion of the sys-
tem but is not sufficient in itself. It needs to be integrated within a
full environment. We believe that, far beyond this pecular point,
functional programming is the ideal setting for defining a more
high-level way of programming the Web. It allows the programmer
to concentrate on semantics rather than on implementation details.
Note that this abstraction from low-level technologies does not en-
tail any limitation but offers a huge step forward in expressiveness.

One of the main concerns of our project has been to improve
the reliability of Web applications using static typing, which is at
the opposite of traditional Web programming, based on scripting
languages. We think this evolution is necessary because of the
growing complexity of Web applications. Our experience in writing

application with Eliom and in implementing the whole system itself
shows that relying heavily on sophisticated features of the typing
system simplifies a lot the maintenance and evolution of large
pieces of software.

For all this project, we made the choice of using the Ocaml
language rather than defining a new one. This makes it possible
to take full advantage of the large set of available Ocaml libraries.
We were surprised of being able to encode most of the properties
we wanted using Ocaml’s type system. Very few things are missing
(a better typing of forms is one of them).

Up to now, we have concentrated mainly on server-side pro-
gramming. We intend to extend this work to other aspects of Web
programming, namely database interaction and client-side pro-
gramming. This last point is really challenging as it is not obvious
how to build a Web site where some parts of the code run on the
server and other parts on the client, with strong safety guarantees.
Our first experiment in that direction has been the implementation
of a virtual machine for Ocaml in Javascript (Canou et al. 2008).

Currently, the Ocsigen implementation is mature enough to be
used for developing and operating real Web sites. Ocsigen is an
open source project with a growing community of users, who have
already developed significant Eliom-based applications, and who
were a great help in building a strong and usable tool. We thank
them all.

References
Vincent Balat. Ocsigen: Typing Web interaction with Objective Caml. In

ML ’06, 2006. doi: http://doi.acm.org/10.1145/1159876.1159889.

Benjamin Canou, Vincent Balat, and Emmanuel Chailloux. O’browser:
Objective Caml on browsers. In ML ’08, 2008. doi: http://doi.acm.org/
10.1145/1411304.1411315.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web
programming without tiers. In FMCO 2006, 2006.

Olivier Danvy. Functional unparsing. Journal of Functional Programming,
8(6):621–625, 1998.

Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside – a
multiple control flow web application framework. In ESUG 2004, 2004.

Alain Frisch. OCaml + XDuce. In ICFP 2006, 2006. doi: http://doi.acm.
org/10.1145/1160074.1159829.

Paul Graham. Beating the averages, 2001. URL http://www.
paulgraham.com/avg.html.

John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37(1–3):67–111, 2000.

Shriram Krishnamurthi, Peter Walton Hopkins, Jay Mccarthy, Paul T.
Graunke, Greg Pettyjohn, and Matthias Felleisen. Implementation and
use of the PLT Scheme Web server. In Higher-Order and Symbolic Com-
putation, 2007.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Jérôme Vouillon, and
Dider Rémy. The Objective Caml system. Software and documentation
available on the Web, 2008. URL http://caml.inria.fr/.

Mark Nottingham and Robert Sayre. The Atom Syndication Format.
RFC 4287, December 2005.

François Pottier and Yann Régis-Gianas. Stratified type inference for
generalized algebraic data types. In POPL 2006, January 2006.

Christian Queinnec. The influence of browsers on evaluators or, continua-
tions to program web servers. In ICFP 2000, September 2000.

Christoph Sauer, Chuck Smith, and Tomas Benz. Wikicreole: a common
wiki markup. In WikiSym ’07, 2007. doi: http://doi.acm.org/10.1145/
1296951.1296966.

Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop, a language for
programming the Web 2.0. In Dynamic Languages Symposium, 2006.

Peter Thiemann. Wash/CGI: Server-side Web scripting with sessions and
typed, compositional forms. In PADL ’02, January 2002.

http://www.paulgraham.com/avg.html
http://www.paulgraham.com/avg.html
http://caml.inria.fr/

www.manaraa.com

Jérôme Vouillon. Lwt: a cooperative thread library. In ML ’08, 2008. doi:
http://doi.acm.org/10.1145/1411304.1411307.

Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. In POPL 2003, January 2003.

	Introduction
	Functional Programming for the Web
	Cooperative Threads
	Web Programming

	Typing a Web Application
	XML Typing
	Typing Web Interactions
	Typing Database Accesses

	An Application: Writing a Wiki with Ocsigen
	An Overview of Ocsimore
	General Structure of the Code

	Conclusion

